IO tools (text, CSV, HDF5, …)
The pandas I/O API is a set of top level  reader  functions accessed like  pandas.read_csv()  that generally return a pandas object. The corresponding  writer  functions are object methods that are accessed like  DataFrame.to_csv(). Below is a table containing available  readers  and  writers.
- IO tools (text, CSV, HDF5, …)
- Indexing and selecting data
- MultiIndex / advanced indexing
- Merge, join, and concatenate
- Reshaping and pivot tables
- Working with text data
- Working with missing data
- Categorical data
- Nullable integer data type
- Nullable Boolean Data Type
- Visualization
- Computational tools
- Group By: split-apply-combine
- Time series / date functionality
- Time deltas
- Styling
- Options and settings
- Enhancing performance
- Scaling to large datasets
- Sparse data structures
- Frequently Asked Questions (FAQ)
- Cookbook
| Type | Data Description | Reader | Writer | 
|---|---|---|---|
| text | CSV | read_csv | to_csv | 
| text | Fixed-Width Text File | read_fwf | - | 
| text | JSON | read_json | to_json | 
| text | HTML | read_html | to_html | 
| text | Local clipboard | read_clipboard | to_clipboard | 
| - | MS Excel | read_excel | to_excel | 
| binary | OpenDocument | read_excel | - | 
| binary | HDF5 Format | read_hdf | to_hdf | 
| binary | Feather Format | read_feather | to_feather | 
| binary | Parquet Format | read_parquet | to_parquet | 
| binary | ORC Format | read_orc | - | 
| binary | Msgpack | read_msgpack | to_msgpack | 
| binary | Stata | read_stata | to_stata | 
| binary | SAS | read_sas | - | 
| binary | SPSS | read_spss | - | 
| binary | Python Pickle Format | read_pickle | to_pickle | 
| SQL | SQL | read_sql | to_sql | 
| SQL | Google BigQuery | read_gbq | to_gbq | 
Here is an informal performance comparison for some of these IO methods.
Note
For examples that use the
StringIOclass, make sure you import it according to your Python version, i.e.from StringIO import StringIOfor Python 2 andfrom io import StringIOfor Python 3.Source : .